Modul-Handbuch (Pflichtmodule) zum Bachelor-Studiengang Physik der Universität Rostock

Inhal	tsübersicht	Seite
1. Leł	nrgebiet Experimentalphysik	
1.1	Experimental-Physik I (Mechanik, Wärme)	2
1.2	Experimental-Physik II (Elektrizität, Magnetismus, Optik)	3
1.3	Experimental-Physik III (Relativität, Quanten)	4
1.4	Experimental-Physik IV (Atome, Moleküle)	5
1.5	Experimental-Physik V (Festkörperphysik)	6
1.6	Experimental-Physik VI (Kern-, Teilchen-, Astrophysik)	7
1.7	Grundpraktikum I (Mechanik, Wärme)	8
1.8	Grundpraktikum II (Elektrizität, Magnetismus, Optik)	9
1.9	Grundpraktikum III (Relativität, Quanten, Atome)	10
1.10	Fortgeschrittenenpraktikum I (Elektronische Messtechnik)) 11
1.11	Fortgeschrittenenpraktikum II (Spektroskopie komplexer Systeme)	12
2. Leł	nrgebiet Theoretische Physik	
2.1	Theoretische Physik I (Mathematische Methoden)	13
2.2	Theoretische Physik II (Mechanik)	14
2.3	Theoretische Physik III (Elektrodynamik, Optik)	15
2.4	Theoretische Physik IV (Quantenphysik)	16
2.5	Theoretische Physik V (Thermodynamik)	17
2.6	Theoretische Physik VI (Statistische Physik)	18
3. Leł	nrgebiet Mathematik	
3.1	Lineare Algebra	19
3.2	Analysis I (Differential- und Integralrechnung)	20
3.3	Analysis II (Funktionen von mehreren Veränderlichen)	21
3.4	Analysis III (Funktionentheorie, Hilbertraumtheorie)	22
3.5	Analysis IV (Distributionen, partielle Differential-	
	gleichungen)	23

Modulbezeichnung	Experimental-Physik I : Mechanik, Wärme
Modulnummer	12611
Modulverantwortliche(r)	Hochschullehrer Experimentelle und Angewandte Physik
Lehrveranstaltungen	Vorlesungen 4 SWS Übungen 2 SWS Praktikum 1 SWS

Sprache	deutsch
Studienrichtung/Teilnehmerkreis	Bachelor-Studiengang Physik
Kategorie/Lage im Studienplan	Pflichtmodul / Grundlagenstudium 1. Semester
Fachliches Teilgebiet / Beziehung zu Folgemodulen	Experimentalphysik / Voraussetzung für Experimentalphysik II-VI und Theoretische Physik II

Dauer des Moduls	1 Semester
Termin des Moduls	jedes Wintersemester
Präsenzzeit in h	105
Eigenstudium in h	162
Prüfung in h	3
Leistungspunkte	9

Vorausgesetzte Kenntnisse	Abiturkenntnisse
Vermittelte Kompetenzen	Gründliches Verständnis der fundamentalen experimentellen Befunde der klassischen Physik und ihrer mathematischen Beschreibung, in diesem Modul auf den Gebieten der Mechanik und Wärmelehre. Verbunden damit ist ein Überblick über die Entwicklung der Physik bis zum Beginn des 20. Jahrhunderts. Erwerb des Verständnisses der grundlegenden physikalischen Methoden und Arbeitsweisen und der Befähigung, alle weiteren Module des Bachelor-Studienganges in Physik zu absolvieren.
Inhalt	Mechanik: Kinematik des Massenpunktes, Newtonsche Dynamik, Kräfte, Impuls, Energie und Arbeit, Drehimpuls und Drehmoment, bewegte Bezugssysteme, Systeme von Massenpunkten, Stoßprozesse Mechanik starrer Körper: Kinematik, Statik, Rotation um eine feste Achse, Rotation im Raum Mechanik deformierbarer Körper: Feste Körper, Hydrostatik, strömende Flüssigkeiten und Gase Schwingungen und Wellen: Oszillator, Wellen, Akustik Wärmelehre und Thermodynamik: Einführung in die Wärmelehre, phänomenologische Grundlagen, kinetische Gastheorie, Transporterscheinungen, Grundbegriffe der Thermodynamik, 2. Hauptsatz der Thermodynamik, Phasenübergänge und reale Gase Einführende physikalische Experimente: Demonstration der experimentellen Methode, Messfehler

Prüfungsvorleistungen	Lösung von 50 % der geforderten Übungsaufgaben
Art, Umfang der Prüfung	Klausur, 180 Minuten
Regelprüfungstermin	Prüfungszeitraum des 1. Semesters
Zugelassene Hilfsmittel	nichtprogrammierbarer Taschenrechner
Noten	Bewertung nach deutschem Notensystem

Modulbezeichnung	Experimental-Physik II: Elektrizität, Magnetismus, Optik
Modulnummer	12612
Modulverantwortliche(r)	Hochschullehrer Experimentelle und Angewandte Physik
Lehrveranstaltungen	Vorlesungen 4 SWS Übungen 2 SWS

Sprache	deutsch
Studienrichtung/Teilnehmerkreis	Bachelor-Studiengang Physik
Kategorie/Lage im Studienplan	Pflichtmodul / Grundlagenstudium 2. Semester
Fachliches Teilgebiet / Beziehung zu Folgemodulen	Experimentalphysik / Voraussetzung für Experimentalphysik III-VI und Theoretische Physik III

Dauer des Moduls	1 Semester
Termin des Moduls	jedes Sommersemester
Präsenzzeit in h	90
Eigenstudium in h	179,5
Prüfung in h	0,5
Leistungspunkte	9

Vorausgesetzte Kenntnisse	Abiturkenntnisse, Theoretische Physik I
Vermittelte Kompetenzen	Gründliches Verständnis der fundamentalen experimentellen Befunde der klassischen Physik und ihrer mathematischen Beschreibung, in diesem Modul auf den Gebieten des Elektromagnetismus und der Optik. Verbunden ist ein Überblick über die Entwicklung der Physik bis zum Beginn des 20. Jahrhunderts. Erwerb des Verständnisses der grundlegenden physikalischen Methoden und Arbeitsweisen und der Befähigung, alle weiteren Module des Bachelor-Studienganges in Physik zu absolvieren
Inhalt	Elektrostatik: Ladung, Coulombsches Gesetz, elektrisches Feld, Potential, Gauß'sches Gesetz, Kondensator und Dielektrikum Stromkreise: Strom und Widerstand, Kirchhoffsche Gesetze Magnetisches Feld: Magnetfeld elektrischer Ströme, Materie im Magnetfeld, Induktionsgesetz, Selbstinduktion, Wechselströme Elektromagnetische Wellen: Schwingungen, allgemeine Wellenphänomene, Elektromagnetische Wellen im Vakuum und in Materie Optik: Licht, Reflexion und Brechung, Geometrische Optik, Kugelwellen, Interferenz, Beugung, Gitter und Spektren, Polarisation, Optische Instrumente, Holographie, Fourier-Optik

Prüfungsvorleistungen	Lösung von 50 % der geforderten Übungsaufgaben
Art, Umfang der Prüfung	mündliche Prüfung, 30 Minuten
Regelprüfungstermin	Prüfungszeitraum des 2. Semesters
Zugelassene Hilfsmittel	nichtprogrammierbarer Taschenrechner
Noten	Bewertung nach deutschem Notensystem

Modulbezeichnung	Experimental-Physik III : Relativität, Quanten
Modulnummer	12613
Modulverantwortliche(r)	Hochschullehrer Experimentelle und Angewandte Physik
Lehrveranstaltungen	Vorlesungen 3 SWS Übungen 1 SWS

Sprache	deutsch
Studienrichtung/Teilnehmerkreis	Bachelor-Studiengang Physik
Kategorie/Lage im Studienplan	Pflichtmodul / Grundlagenstudium 3. Semester
Fachliches Teilgebiet / Beziehung zu Folgemodulen	Experimentalphysik / Voraussetzung für Experimentalphysik IV-VI und Theoretische Physik IV

Dauer des Moduls	1 Semester
Termin des Moduls	jedes Wintersemester
Präsenzzeit in h	60
Eigenstudium in h	117
Prüfung in h	3
Leistungspunkte	6

Vorausgesetzte Kenntnisse	Experimentalphysik I,II
Vermittelte Kompetenzen	Die Studierenden sollen - experimentelle Grundlagen der Relativitätstheorie und Quantenmechanik kennenlernen - in der Lage sein, die erarbeiteten Zusammenhänge und Gesetze qualitativ und quantitativ zu benutzen
Inhalt	Relativitätstheorie: Einsteins Relativitätsprinzip, Längenkontraktion, Zeitdilatation, Dopplerverschiebung, Lorentztransformation, Relativistische Dynamik und Kinematik, Allgemeine Relativitätstheorie, Schwarze Löcher Quantentheorie des Lichts: Schwarzkörperstrahlung, Photo- und Compton-Effekt Teilchennatur der Materie: Atome, Elektronen, Atommodelle Materiewellen: DeBroglie Hypothese, Wellennatur von Teilchen, Elektronenbeugung, Wahrscheinlichkeitsinterpretation, Wellenpakete, Unschärferelationen, Wellenfunktion Schrödingergleichung: Beispiele zur Schrödingergleichung, Potentialstufe und Tunneleffekt, 3-dimensionale Schrödingergleichung, Drehimpuls

Prüfungsvorleistungen	Lösung von 50 % der geforderten Übungsaufgaben	
Art, Umfang der Prüfung	Klausur, 180 Minuten	
Regelprüfungstermin	Prüfungszeitraum des 3. Semesters	
Zugelassene Hilfsmittel	Ifsmittel nichtprogrammierbarer Taschenrechner	
Noten	Bewertung nach deutschem Notensystem	

Modulbezeichnung	Experimental-Physik IV : Atome, Moleküle
Modulnummer	12614
Modulverantwortliche(r)	Hochschullehrer Experimentelle und Angewandte Physik
Lehrveranstaltungen	Vorlesungen 3 SWS Übungen 1 SWS

Sprache	deutsch
Studienrichtung/Teilnehmerkreis	Bachelor-Studiengang Physik
Kategorie/Lage im Studienplan	Pflichtmodul / Grundlagenstudium 4. Semester
Fachliches Teilgebiet / Beziehung zu Folgemodulen	Experimentalphysik / Voraussetzung für Experimentalphysik V,VI

Dauer des Moduls	1 Semester
Termin des Moduls	jedes Sommersemester
Präsenzzeit in h	60
Eigenstudium in h	117
Prüfung in h	3
Leistungspunkte	6

Vorausgesetzte Kenntnisse	Experimentalphysik I-III
Vermittelte Kompetenzen	Die Studierenden sollen - experimentelle Grundlagen der Atom- und Molekülphysik kennenlernen - in der Lage sein, die erarbeiteten Zusammenhänge und Gesetze qualitativ und quantitativ zu benutzen
Inhalt	Atomphysik: Quantelung von Energie und Drehimpuls im Wasserstoffatom, Stern-Gerlach-Versuch und Elektronenspin, Gesamtdrehimpuls und Spin-Bahn-Kopplung, Relativistische Korrekturen, Wasserstoffatom im Magnetfeld, Zeemanund Paschen-Back-Effekt, Lambverschiebung, Hyperfeinstruktur, Exotische Atome Mehrelektronensysteme: Helium-Atom, Pauli-Prinzip, Kopplungsschema für Elektronendrehimpulse, Periodensystem der Elemente, Alkaliatome, Edelgase, Hundsche Regeln Atomspektroskopie: Angeregte Atomzustände, induzierte und spontane Übergänge, Übergangswahrscheinlichkeiten und Auswahlregeln, Parität eines Zustandes, Lebensdauer von Atomzuständen, Linienbreiten, Laser Molekülphysik: Bindungsmechanismen: ionische, kovalente und Van-der-Waals-Bindung, Beschreibung von [H2+]-Molekülionen und H2-Molekülen, Anregungen zweiatomiger Moleküle, Rotationen und Schwingungen zweiatomiger Moleküle, Mehratomige Moleküle

Prüfungsvorleistungen	brleistungen Lösung von 50 % der geforderten Übungsaufgaben	
Art, Umfang der Prüfung Klausur, 180 Minuten		
Regelprüfungstermin	Prüfungszeitraum des 4. Semesters	
Zugelassene Hilfsmittel nichtprogrammierbarer Taschenrechner		
Noten	Bewertung nach deutschem Notensystem	

Modulbezeichnung	Experimental-Physik V : Festkörperphysik
Modulnummer	12615
Modulverantwortliche(r)	Hochschullehrer Experimentelle und Angewandte Physik
Lehrveranstaltungen	Vorlesungen 3 SWS Seminar 1 SWS

Sprache	deutsch
Studienrichtung/Teilnehmerkreis	Bachelor-Studiengang Physik
Kategorie/Lage im Studienplan	Pflichtmodul / Grundlagenstudium 5. Semester
Fachliches Teilgebiet / Beziehung zu Folgemodulen	Experimentalphysik / Voraussetzung für Experimentalphysik VI

Dauer des Moduls	1 Semester
Termin des Moduls	jedes Wintersemester
Präsenzzeit in h	60
Eigenstudium in h	117
Prüfung in h	3
Leistungspunkte	6

Vorausgesetzte Kenntnisse	Experimentalphysik I-IV, Theoretische Physik I-IV
Vermittelte Kompetenzen	Gründliches Verständnis der fundamentalen Eigenschaften von kondensierter Materie und Festkörpern und Kennenlernen der wesentlichen experimentellen Methoden. In dieser Vorlesung erkennen die Studierenden insbesondere die Vernetzung mit dem in den vorangegangenen Modulen zur Experimentalphysik und Theoretischen Physik erarbeiteten Wissen. Ein Seminarvortrag dient zur Entwicklung eigener wissenschaftlicher Fähigkeiten.
Inhalt	Strukturen: Beugung, reziprokes Gitter, Beugung von Wellen und Teilchen am Kristallgitter, Bindungsverhältnisse in Festkörpern, Realstrukturen, Fehlstellen, Versetzungen Gitterschwingungen: Grundlagen der Elastizität, Dispersionsbeziehungen, Streuquerschnitte, Zustandsdichten (ein- und mehrdimensional), Spezifische Wärme, Anharmonische Effekte Elektronengas: Freies Elektronengas, Dimensionalität, Leitfähigkeit, Bändermodell, Klassifizierung von Festkörpern, Bandstrukturen typischer Elemente, Fermiflächen Halbleiter: Ladungsträgerkonzentration, Ferminiveau, hochdotierte, amorphe Halbleiter, p-n-Übergang, Solarzelle, Transistoren Supraleiter: BCS-Theorie, High-Tc Dielektrische Eigenschaften: Polarisierbarkeit, Ferroelektrizität, Piezoelektrizität Magnetismus: Klassifizierung, Grundlagen, Spektroskopie

Prüfungsvorleistungen	Seminarvortrag, Lösung von 50 % der geforderten Übungsaufgaben
Art, Umfang der Prüfung Klausur, 180 Minuten	
Regelprüfungstermin	Prüfungszeitraum des 5. Semesters
Zugelassene Hilfsmittel nichtprogrammierbarer Taschenrechner	
Noten	Bewertung nach deutschem Notensystem

Modulbezeichnung	Experimental-Physik VI : Kern-, Teilchen-, Astrophysik
Modulnummer	12616
Modulverantwortliche(r)	Hochschullehrer Experimentelle und Angewandte Physik
Lehrveranstaltungen	Vorlesungen 3 SWS Übungen 1 SWS

Sprache	deutsch
Studienrichtung/Teilnehmerkreis	Bachelor-Studiengang Physik
Kategorie/Lage im Studienplan	Pflichtmodul / Grundlagenstudium 6. Semester
Fachliches Teilgebiet / Beziehung zu Folgemodulen	Experimentalphysik / keine Folgemodule

Dauer des Moduls	1 Semester
Termin des Moduls	jedes Sommersemester
Präsenzzeit in h	60
Eigenstudium in h	117
Prüfung in h	3
Leistungspunkte	6

Vorausgesetzte Kenntnisse	Experimentalphysik I-IV, Theoretische Physik I-IV
Vermittelte Kompetenzen	Kennenlernen der Grundlagen von Kern-, Teilchen- und Astrophysik Erwerb der Fähigkeit, die erarbeiteten Gesetzmäßigkeiten und Konzepte qualitativ und quantitativ zu benutzen.
Inhalt	Physikalische Grundlagen: Relativistische Kinematik, Beschleuniger und Detektoren
	Kernphysik: Eigenschaften der Kerne, Stabilität und geometrische Gestalt der Kerne, Kernkraft, Aufbau der Kerne, Kerntechnik
	Teilchenphysik: Struktur der Nukleonen, Quarkmodell, geladene Leptonen und Neutrinos, Starke und Schwache Wechselwirkung, Austauschteilchen, Paritätsverletzung, Standard-Modell
	Astrophysik: Ausdehnung des Universums, Hintergrundstrahlung, Elementensynthese, Geschichte des Universums, Sternentwicklung, Sonne, Supernova

Prüfungsvorleistungen	Lösung von 50 % der geforderten Übungsaufgaben
Art, Umfang der Prüfung	Klausur, 180 Minuten
Regelprüfungstermin	Prüfungszeitraum des 6. Semesters
Zugelassene Hilfsmittel	keine
Noten	Bewertung nach deutschem Notensystem

Modulbezeichnung	Grundpraktikum I : Mechanik, Wärme
Modulnummer	12622
Modulverantwortliche(r)	Hochschullehrer Experimentelle und Angewandte Physik
Lehrveranstaltungen	Praktikum 3 SWS

Sprache	deutsch
Studienrichtung/Teilnehmerkreis	Bachelor-Studiengang Physik
Kategorie/Lage im Studienplan	Pflichtmodul / Grundlagenstudium 2. Semester
Fachliches Teilgebiet / Beziehung zu Folgemodulen	Experimentalphysik / Voraussetzung für Grundpraktikum II

Dauer des Moduls	1 Semester
Termin des Moduls	jedes Sommersemester
Präsenzzeit in h	45
Eigenstudium in h	43
Prüfung in h	2
Leistungspunkte	3

Vorausgesetzte Kenntnisse	Experimentalphysik I
Vermittelte Kompetenzen	Grundkenntnisse und Fertigkeiten des experimentellen Arbeitens in der Physik, insbesondere durch Messen physikalischer Größen und Überprüfen physikalischer Gesetzmäßigkeiten auf den Gebieten der Mechanik und Wärmelehre Kennenlernen grundlegender Messverfahren und wichtiger Meßgeräte, Versuchsplanung und -aufbau, Durchführung und Protokollierung von Messungen, Auswertung von Messergebnissen einschließlich Fehlerberechnung, kritische Bewertung und Diskussion der Ergebnisse.
Inhalt	Pendelbewegung, freie und erzwungene Schwingungen elastische Eigenschaften von Festkörpern, Schallwellen in Festkörpern Rotation starrer Körper Strömungen in Flüssigkeiten und Gasen Zustandsgleichungen idealer und realer Gase

Prüfungsvorleistungen	Erfolgreiche Bearbeitung der geforderten Praktikumsexperimente
Art, Umfang der Prüfung Prüfungspraktikum, 120 Minuten	
Regelprüfungstermin	Prüfungszeitraum des 2. Semesters
Zugelassene Hilfsmittel	Taschenrechner
Noten	Bewertung nach deutschem Notensystem

Modulbezeichnung	Grundpraktikum II: Elektrizität, Magnetismus, Optik	
Modulnummer	12623	
Modulverantwortliche(r) Hochschullehrer Experimentelle und Angewandte Physik		
Lehrveranstaltungen Praktikum 3 SWS		

Sprache	deutsch
Studienrichtung/Teilnehmerkreis	Bachelor-Studiengang Physik
Kategorie/Lage im Studienplan	Pflichtmodul / Grundlagenstudium 3. Semester
Fachliches Teilgebiet / Beziehung zu Folgemodulen	Experimentalphysik / Voraussetzung für Grundpraktikum III

Dauer des Moduls	1 Semester	
Termin des Moduls	jedes Wintersemester	
Präsenzzeit in h	45	
Eigenstudium in h	43	
Prüfung in h	2	
Leistungspunkte	3	

Vorausgesetzte Kenntnisse	Experimentalphysik I, II, Grundpraktikum I
Vermittelte Kompetenzen	Weiterentwicklung von Kenntnissen und Fertigkeiten des experimentellen Arbeitens in der Physik durch Messen physikalischer Größen und Überprüfen physikalischer Gesetzmäßigkeiten auf den Gebieten der Elektrizität, des Magnetismus und der Optik Kennenlernen von Messverfahren zur Bestimmung der Parameter elektrischer und magnetischer Felder, der elektrischen Eigenschaften von Festkörpern sowie der Funktionsweise optischer Geräte
Inhalt	Elektrizität: elektrisches Feld, Widerstandsmessung, Leitungsmechanismen, lineare passive Netzwerke, nichtlineare Netzwerke Magnetismus: Magnetfeldmessung, Erdmagnetfeld, magnetisches Moment Optik: Strahlengänge in optischen Geräten, Polarisation, Dispersion, Mikroskop, Reflexion

Prüfungsvorleistungen	Erfolgreiche Bearbeitung der geforderten Praktikumsexperimente	
Art, Umfang der Prüfung	Prüfungspraktikum, 120 Minuten	
Regelprüfungstermin	Prüfungszeitraum des 3. Semesters	
Zugelassene Hilfsmittel	nittel Taschenrechner	
Noten	Bewertung nach deutschem Notensystem	

Modulbezeichnung	Grundpraktikum III: Relativität, Quanten, Atome	
Modulnummer	12624	
Modulverantwortliche(r) Hochschullehrer Experimentelle und Angewandte Physik		
Lehrveranstaltungen	en Praktikum 3 SWS	

Sprache	deutsch
Studienrichtung/Teilnehmerkreis	Bachelor-Studiengang Physik
Kategorie/Lage im Studienplan	Pflichtmodul / Grundlagenstudium 4. Semester
Fachliches Teilgebiet / Beziehung zu Folgemodulen	Experimentalphysik / Voraussetzung für Fortgeschrittenenpraktika I, II

Dauer des Moduls	1 Semester	
Termin des Moduls	jedes Sommersemester	
Präsenzzeit in h	45	
Eigenstudium in h	43	
Prüfung in h	2	
Leistungspunkte	3	

Vorausgesetzte Kenntnisse	Experimentalphysik I-III, Grundpraktikum I, II
Vermittelte Kompetenzen	Weiterentwicklung von Kenntnissen und Fertigkeiten des experimentellen Arbeitens in der Physik durch Messen physikalischer Größen und Überprüfen physikalischer Gesetzmäßigkeiten auf den Gebieten der Relativitätstheorie, der Quanten- und Atomphysik Verständnis des Welle-Teilchen-Dualismus von Licht und Materie Kennenlernen von grundlegenden Messverfahren und wichtigen Messgeräten zur Bestimmung der Eigenschaften von Elementarteilchen, Atomen und Quanten
Inhalt	$Relativit \"at: \ Michelson-Interferometer \\ Welle-Teilchen-Dualismus: \\ Teilchencharakter: \ Plancksches \ Wirkungsquantum, \ Franck- \ Hertz-Experiment, \\ Elementarladung, \ Elektronenmasse \\ Wellencharakter: \ Beugung \ an \ Spalten, \ Newton-Ringe \\ Radioaktivit \"at: \ Szintillationszähler, \ \gamma-Spektroskopie, \ \gamma-Absorption \\$

Prüfungsvorleistungen	Erfolgreiche Bearbeitung der geforderten Praktikumsexperimente	
Art, Umfang der Prüfung	Prüfungspraktikum, 120 Minuten	
Regelprüfungstermin	Prüfungszeitraum des 4. Semesters	
Zugelassene Hilfsmittel	Ifsmittel Taschenrechner	
Noten	Bewertung nach deutschem Notensystem	

Modulbezeichnung	Fortgeschrittenenpraktikum I: Elektronische Messtechnik	
Modulnummer	12625	
Modulverantwortliche(r)	Hochschullehrer Experimentelle und Angewandte Physik	
Lehrveranstaltungen	Praktikum 4 SWS	

Sprache	deutsch
Studienrichtung/Teilnehmerkreis	Bachelor-Studiengang Physik
Kategorie/Lage im Studienplan	Pflichtmodul / Grundlagenstudium, 5. Semester
Fachliches Teilgebiet / Beziehung zu Folgemodulen	Experimentalphysik / Voraussetzung für Fortgeschrittenenpraktikum II

Dauer des Moduls	1 Semester	
Termin des Moduls	jedes Wintersemester	
Präsenzzeit in h	60	
Eigenstudium in h	119,5	
Prüfung in h	0,5	
Leistungspunkte	6	

Vorausgesetzte Kenntnisse	Experimentalphysik I-IV, Grundpraktikum I-III
Vermittelte Kompetenzen	Grundlegende Experimente zu analogen und digitalen Schaltungen der elektronischen Messtechnik, Informationsverarbeitung und -übertragung.
Inhalt	Übertragungseigenschaften linearer und nichtlinearer Vierpole analoge Schaltungen mit Operationsverstärkern zur Erzeugung Stabilisierung und selektiven Messung von Signalen digitale Signalverarbeitung, Übertragung und Steuerung

Prüfungsvorleistungen	Ausgearbeitete und benotete Arbeiten zu den im Rahmen des Prakti- kums angebotenen Versuchen	
Art, Umfang der Prüfung	Mündliche Prüfung, 30 Minuten	
Regelprüfungstermin	Prüfungszeitraum des 5. Semesters	
Zugelassene Hilfsmittel	keine	
Noten	Bewertung nach deutschem Notensystem	

Modulbezeichnung	Fortgeschrittenenpraktikum II: Spektroskopie komplexer Systeme	
Modulnummer	12626	
Modulverantwortliche(r)	Hochschullehrer Experimentelle und Angewandte Physik	
Lehrveranstaltungen	Praktikum 4 SWS	

Sprache	deutsch
Studienrichtung/Teilnehmerkreis	Bachelor-Studiengang Physik
Kategorie/Lage im Studienplan	Pflichtmodul / Grundlagenstudium, 6. Semester
Fachliches Teilgebiet / Beziehung zu Folgemodulen	Experimentalphysik / keine Folgemodule

Dauer des Moduls	1 Semester	
Termin des Moduls	jedes Semester	
Präsenzzeit in h	60	
Eigenstudium in h	119,5	
Prüfung in h	0,5	
Leistungspunkte	6	

Vorausgesetzte Kenntnisse	Experimentalphysik I-V, Grundpraktikum I-III, Fortgeschrittenenpraktikum I
Vermittelte Kompetenzen	Kennenlernen, Nachweis, Analyse und Interpretation physikalischer Prozesse, Posterpräsentation und Vortragstechnik
Inhalt	Spektroskopie von Vielteilchensystemen Nichtlineare Prozesse Sensorik Analyse elementarer und komplexer physikalischer Prozesse

Prüfungsvorleistungen	Protokolle zu den im Rahmen des Praktikums angebotenen Experimenten, eine Posterpräsentation
Art, Umfang der Prüfung	mündliche Prüfung, 30 Minuten, bestehend aus einem 20-minütigen Vortrag über ein ausgewähltes im Praktikum durchgeführtes Experiment und einer 10-minütigen Befragung
Regelprüfungstermin	Prüfungszeitraum des 6. Semesters
Zugelassene Hilfsmittel	keine
Noten	Bewertung nach deutschem Notensystem

Modulbezeichnung	Theoretische Physik I: Mathematische Methoden	
Modulnummer	12631	
Modulverantwortliche(r)	Hochschullehrer Theoretische Physik	
Lehrveranstaltungen	Vorlesungen 3 SWS Übungen 1 SWS	

Sprache	deutsch
Studienrichtung/Teilnehmerkreis	Bachelor-Studiengang Physik
Kategorie/Lage im Studienplan	Pflichtmodul / Grundlagenstudium 1. Semester
Fachliches Teilgebiet / Beziehung zu Folgemodulen	Theoretische Physik / Voraussetzung für Theoretische Physik II-VI und Experimentalphysik I (Einführungspraktikum)

Dauer des Moduls	1 Semester	
Termin des Moduls	jedes Wintersemester	
Präsenzzeit in h	60	
Eigenstudium in h	118	
Prüfung in h	2	
Leistungspunkte	6	

Vorausgesetzte Kenntnisse	Abiturkenntnisse
Vermittelte Kompetenzen	Die Studierenden erwerben Kenntnisse der zum Verständnis der Theoretischen Physik, insbesondere der Mechanik und Elektrodynamik, erforderlichen mathematischen Grundlagen. Neben grunlegendem Wissen zur Wahrscheinlichkeitsund Fehlerrechnung werden die erforderlichen Fertigkeiten im Umgang mit Vektoralgebra und -analysis sowie mit gewöhnlichen Differentialgleichungen entwickelt.
Inhalt	Wahrscheinlichkeits- und Fehlerrechnung: Wahrscheinlichkeitsbegriff, Mittelwert, Varianz, Korrelationen, systematische und statistische Fehler, Fehlerfortpflanzung Vektoralgebra: Skalar-, Vektor-, Mehrfachprodukte, Komponentendarstellung Vektoranalysis: Differentiation von Vektoren, Nabla-Operator, skalare und Vektorfelder, Wirbel und Quellen, Integralsätze Gewöhnliche Differentialgleichungen: Definition gewöhnlicher Differentialgleichungen, homogene und inhomogene lineare Differentialgleichungen Krummlinige Koordinatensysteme: Koordinatentransformation, kovariante und kontravariante Komponenten, Darstellung von Gradient, Divergenz, Rotation, Laplaceoperator in Zylinder- und Kugelkoordinaten

Prüfungsvorleistungen	Lösung von 50 % der geforderten Übungsaufgaben
Art, Umfang der Prüfung	Klausur, 120 Minuten
Regelprüfungstermin	Prüfungszeitraum des 1. Semesters
Zugelassene Hilfsmittel	keine
Noten	Bewertung nach deutschem Notensystem

Modulbezeichnung	Theoretische Physik II: Mechanik
Modulnummer	12632
Modulverantwortliche(r)	Hochschullehrer Theoretische Physik
Lehrveranstaltungen	Vorlesungen 3 SWS Übungen 1 SWS

Sprache	deutsch
Studienrichtung/Teilnehmerkreis	Bachelor-Studiengang Physik
Kategorie/Lage im Studienplan	Pflichtmodul / Grundlagenstudium 2. Semester
Fachliches Teilgebiet / Beziehung zu Folgemodulen	Theoretische Physik / Voraussetzung für Theoretische Physik III-VI

Dauer des Moduls	1 Semester
Termin des Moduls	jedes Sommersemester
Präsenzzeit in h	60
Eigenstudium in h	118
Prüfung in h	2
Leistungspunkte	6

Vorausgesetzte Kenntnisse	Theoretische Physik I, Experimentalphysik I
Vermittelte Kompetenzen	Am Beispiel der Mechanik von Massenpunktsystemen erwerben die Studierenden Kenntnisse zur Entwicklung physikalischer Modelle sowie verschiedener theoretisch-mathematischer Methoden zu deren Behandlung. Aufbauend auf der Newtonschen Grundgleichung sind das insbesondere das Hamiltonprinzip, die Lagrangesche und Hamiltonsche Beschreibung der Mechanik. Die Studierenden erkennen dabei deren Bedeutung für das Gesamtsystem der Physik, insbesondere die Bezüge zu Feldtheorie, Statistik und Quantenmechanik.
Inhalt	Newtonsche Mechanik: Galileisches Trägheitsprinzip, Newtonsche Bewegungsgleichungen, Observable und Erhaltungssätze, Konservative Kraftfelder, Schwingungen, Kepler-Problem, Zweikörperproblem Lagrangesche Mechanik: Lagrangesche Gleichungen 2. Art, Forminvarianz, Hamiltonprinzip, Bewegungsbeschränkungen, Freiheitsgrade und generalisierte Koordinaten, Hamiltonprinzip mit Bewegungsbeschränkungen, Zwangskräfte und d'Alembertsches Prinzip, Lagrangesche Gleichungen mit Bewegungsbeschränkungen, Erhaltungsgrößen Hamiltonsche Mechanik: Hamiltonfunktion und kanonische Gleichungen, Poisson-Klammern, Kanonische Transformation, Phasenraum und Liouvillescher Satz, Hamilton-Jacobische Differentialgleichung

Prüfungsvorleistungen	Lösung von 50 % der geforderten Übungsaufgaben
Art, Umfang der Prüfung	Klausur, 120 Minuten
Regelprüfungstermin	Prüfungszeitraum des 2. Semesters
Zugelassene Hilfsmittel	keine
Noten	Bewertung nach deutschem Notensystem

Modulbezeichnung	Theoretische Physik III: Elektrodynamik, Optik
Modulnummer	12633
Modulverantwortliche(r)	Hochschullehrer Theoretische Physik
Lehrveranstaltungen	Vorlesungen 3 SWS Übungen 1 SWS

Sprache	deutsch
Studienrichtung/Teilnehmerkreis	Bachelor-Studiengang Physik
Kategorie/Lage im Studienplan	Pflichtmodul / Grundlagenstudium 3. Semester
Fachliches Teilgebiet / Beziehung zu Folgemodulen	Theoretische Physik / Voraussetzung für Theoretische Physik IV-VI

Dauer des Moduls	1 Semester
Termin des Moduls	jedes Wintersemester
Präsenzzeit in h	60
Eigenstudium in h	118
Prüfung in h	2
Leistungspunkte	6

Vorausgesetzte Kenntnisse	Theoretische Physik I, II, Experimentalphysik II
Vermittelte Kompetenzen	Am Beispiel des elektromagnetischen Feldes erlernen die Studierenden grundlegende Konzepte der Feldtheorie und spezielle mathematische Fähigkeiten zu deren Umsetzung. Sie vertiefen ihre Kenntnisse zu den fundamentalen Begriffen Kraftfeld, Potenzial und Wechselwirkung und lernen effektive Methoden wie z.B. systematische Näherungsverfahren aber auch solche zur Lösung spezieller Probleme kennen. Die Studierenden lernen, wie sich die Energie- und Impulserhaltung, die Potenziale und Fragen der Eichung aus den Maxwellschen Gleichungen ergeben. Spezielle Kentnisse werden bei der Beschreibung statischer Felder, elektromagnetischer Wellen und Medien erworben. Die Studierenden erkennen die Lorentz-Invarianz der Elektrodynamik und lernen, wie sich daraus eine relativistische Mechanik deduzieren lässt.
Inhalt	Grundbegriffe und Grundgleichungen: Ladungen und Ströme, Maxwellsche Gleichungen, Energie und Impuls, Potenziale und Eichung, Medienelektrodynamik Zeitunabhängige Felder: Elektrostatik, Magnetostatik Elektromagnetische Wellen: freie Wellen, Erzeugung und Ausstrahlung elektromagnetischer Wellen Spezielle Relativitätstheorie: Inertialsysteme in der Elektrodynamik, Minkowski-Raum, relativistische Elektrodynamik, relativistische Mechanik

Prüfungsvorleistungen	Lösung von 50 % der geforderten Übungsaufgaben	
Art, Umfang der Prüfung	Klausur, 120 Minuten	
Regelprüfungstermin	Prüfungszeitraum des 3. Semesters	
Zugelassene Hilfsmittel	keine	
Noten	Bewertung nach deutschem Notensystem	

Modulbezeichnung	Theoretische Physik IV: Quantenphysik
Modulnummer	12634
Modulverantwortliche(r)	Hochschullehrer Theoretische Physik
Lehrveranstaltungen	Vorlesungen 4 SWS Übungen 2 SWS

Sprache	deutsch
Studienrichtung/Teilnehmerkreis	Bachelor-Studiengang Physik
Kategorie/Lage im Studienplan	Pflichtmodul / Grundlagenstudium 4. Semester
Fachliches Teilgebiet / Beziehung zu Folgemodulen	Theoretische Physik / Voraussetzung für Theoretische Physik V-VI

Dauer des Moduls	1 Semester
Termin des Moduls	jedes Wintersemester
Präsenzzeit in h	90
Eigenstudium in h	177
Prüfung in h	3
Leistungspunkte	9

Vorausgesetzte Kenntnisse	Theoretische Physik I-III, Experimentalphysik III, Mathematik I-IV
Vermittelte Kompetenzen	Die Studierenden erwerben Kenntnisse zu den grundlegenden Konzepten der Quantenphysik. Neben erkenntnistheoretischem Wissen erlernen sie auch methodische Fähigkeiten, insbesondere zu algebraische Methoden, Näherungsverfahren und im Umgang mit Grundmodellen der Mikrophysik wie harmonischer Oszillator, Stufenpotentiale, Drehimpuls und Wasserstoffatom. Es wird ein tieferes Verständnis von Fragen wie Unschärferelation, Messprozess, Spin, Ununterscheidbarkeit von Teilchen erworben.
Inhalt	Zustände und Operatoren: Quantenmechanische Systeme, Dualismus Welle-Korpuskel, Übergangswahrscheinlichkeit und Wahrscheinlichkeitsamplitude, Basissysteme und Darstellungen, Orts-und Impulsdarstellung, Zustandsfunktion, Messprozess und Operatorbegriff, lineare Operatoren und Hilbertraum, Darstellung von Operatoren, Ortsdarstellung, Vertauschungsrelationen, Unschärferelation, Beispiel: Linearer harmonischer Oszillator.
	Zeitliche Entwicklung und Schrödingergleichung: Schrödingergleichung, Stationäre Zustände, Kastenpotenzial, Potenzialschwelle, Zeitabhängige Prozesse, Zeitliche Änderung von Zuständen und Operatoren in der Quantenphysik Drehimpuls und Wasserstoffatom: Algebraische Behandlung des Drehimpulses in der Quantenmechanik, Bahndrehimpuls, Spin, Bewegung im Zentralkraftfeld, Wasserstoffatom Näherungsverfahren: Ritzsches Variationsverfahren, Zeitabhängige Störungsrechnung
	Identische Teilchen: Prinzip der Ununterscheidbarkeit identischer Teilchen, Basiszustände für Fermionen und Bosonen, Austauschwechselwirkung und Pauli-Prinzip

Prüfungsvorleistungen	Lösung von 50 % der geforderten Übungsaufgaben	
Art, Umfang der Prüfung	Klausur, 180 Minuten	
Regelprüfungstermin	Prüfungszeitraum des 4. Semesters	
Zugelassene Hilfsmittel	keine	
Noten	Bewertung nach deutschem Notensystem	

Modulbezeichnung	Theoretische Physik V: Thermodynamik
Modulnummer	12635
Modulverantwortliche(r)	Hochschullehrer Theoretische Physik
Lehrveranstaltungen	Vorlesungen 3 SWS Übungen 1 SWS

Sprache	deutsch
Studienrichtung/Teilnehmerkreis	Bachelor-Studiengang Physik
Kategorie/Lage im Studienplan	Pflichtmodul / Grundlagenstudium 5. Semester
Fachliches Teilgebiet / Beziehung zu Folgemodulen	Theoretische Physik / Voraussetzung für Theoretische Physik VI

Dauer des Moduls	1 Semester
Termin des Moduls	jedes Wintersemester
Präsenzzeit in h	60
Eigenstudium in h	118
Prüfung in h	2
Leistungspunkte	6

Vorausgesetzte Kenntnisse	Experimentalphysik I, Theoretische Physik I-IV
Vermittelte Kompetenzen	Im Kurs erwerben die Studierenden grundlegende Kenntnisse der Thermodynamik. Das betrifft die empirischen Hauptsätze, den Zusammenhang zwischen Energie und Entropie und die Modelle des idealen und realen Gases. Die Studierenden sollen die Bedeutung thermodynamischer Potenziale erkennen und sie bei der Beschreibung verschiedener Modellsysteme und thermodynamischer Prozesse anwenden. Weiterhin erwerben sie Grundkenntnisse der Theorie der Phasenübergänge und kritischen Phänomene, sowie der klassischen statistischen Physik.
Inhalt	Hauptsätze der Thermodynamik: Zustandsgrößen, thermodynamische Prozesse, 1. Hauptsatz und innere Energie, Kreisprozesse, 2. Hauptsatz und Entropie, Grundlegende thermodynamische Beziehungen: Gibbssche Fundamentalgleichung, thermische und kalorische Zustandsgleichung, Gibbs-Duhem-Relation, Absolutwert der Entropie und 3. Hauptsatz, chemisches Potenzial Thermodynamische Potenziale: Freie Energie und Enthalpie, Planck-Massieusche Funktionen, Maxwell-Relationen, Gleichgewichts- und Stabilitätsbedingungen, Phasendiagramm Einkomponentensysteme, van-der-Waals-Modell und Maxwell-Konstruktion, Phasenübergänge und Ehrenfestsche Gleichungen, kritische Exponenten Thermodynamik von Mehrkomponentensystemen: Gibbssche Phasenregel, Mischungen, osmotischer Druck, Raoultsche Gesetze, chemische Reaktionen, Massenwirkungsgesetz Klassische statistische Physik: Phasenraum, Verteilungsfunktion, Informationsentropie, statistische Gesamtheiten, Zustandsgleichungen, Schwankungen

Prüfungsvorleistungen	Lösung von 50 % der geforderten Übungsaufgaben	
Art, Umfang der Prüfung	Klausur, 120 Minuten	
Regelprüfungstermin	Prüfungszeitraum des 5. Semesters	
Zugelassene Hilfsmittel	keine	
Noten	Bewertung nach deutschem Notensystem	

Modulbezeichnung	Theoretische Physik VI: Statistische Physik	
Modulnummer	12636	
Modulverantwortliche(r)	Hochschullehrer Theoretische Physik	
Lehrveranstaltungen	Vorlesungen 3 SWS Seminare/Übungen 1 SWS	

Sprache	deutsch
Studienrichtung/Teilnehmerkreis	Bachelor-Studiengang Physik
Kategorie/Lage im Studienplan	Pflichtmodul / Grundlagenstudium 6. Semester
Fachliches Teilgebiet / Beziehung zu Folgemodulen	Theoretische Physik / keine Folgemodule

Dauer des Moduls	1 Semester
Termin des Moduls	jedes Sommersemester
Präsenzzeit in h	60
Eigenstudium in h	119,5
Prüfung in h	0,5
Leistungspunkte	6

Vorausgesetzte Kenntnisse	Theoretische Physik I-V
Vermittelte Kompetenzen	Im Kurs erwerben die Studierenden grundlegende Kenntnisse in Statistischer Physik mit dem Schwerpunkt Quantenstatistik. Das Verständnis der theoretischen Grundlagen der Behandlung von Fermi- und Bose-Systemen soll sie in der Lage versetzen, sie auf einfache Modellsysteme anzuwenden. Die Studierenden erlernen Methoden zur Behandlung idealer und realer Quantensysteme und erhalten Kenntnisse zu numerischen Verfahren. Grundkenntnisse der Theorie der Phasenübergänge und kritischen Phänomene werden erworben.
Inhalt	Quantenstatistik: statistische Gesamtheiten, Dichteoperator, Entropie und Zustandsgleichungen Ideale Quantengase: Fermi- und Bose-Statistik, Pauli-Prinzip, 2. Quantisierung und Besetzungszahldarstellung, spezielle Fermi- und Bose-Systeme, Bose-Einstein-Kondensation, Grundlagen der Dichtefunktionaltheorie (reale Systeme) Theorie realer Gase: Mayersche Clusterentwicklung, Fugazitäts- und Dichteentwicklung, Paarverteilungsfunktion und Strukturfaktor, Thermodynamik, Simulationsverfahren Theorie der Phasenbergänge und kritischen Phänomene: Thermodynamik im Magnetfeld, Paramagnetismus, Ising-Modell, Mean- Field-Methode, Heisenberg-Modell

Prüfungsvorleistungen	Lösung von 50 % der geforderten Übungsaufgaben
Art, Umfang der Prüfung	Mündliche Prüfung, 30 Minuten
Regelprüfungstermin	Prüfungszeitraum des 6. Semesters
Zugelassene Hilfsmittel	keine
Noten	Bewertung nach deutschem Notensystem

Modulbezeichnung	Lineare Algebra
Modulnummer	12651
Modulverantwortliche(r)	Hochschullehrer Institut für Mathematik
Lehrveranstaltungen	Vorlesungen 3 SWS Übungen 1 SWS

Sprache	deutsch
Studienrichtung/Teilnehmerkreis	Bachelor-Studiengang Physik
Kategorie/Lage im Studienplan	Pflichtmodul / Grundlagenstudium, 1. Semester
Fachliches Teilgebiet / Beziehung zu Folgemodulen	Mathematik / Voraussetzung für Theoretische Physik II-VI, Analysis II-IV

Dauer des Moduls	1 Semester
Termin des Moduls	jedes Wintersemester
Präsenzzeit in h	60
Eigenstudium in h	118
Prüfung in h	2
Leistungspunkte	6

Vorausgesetzte Kenntnisse	Abiturkenntnisse
Vermittelte Kompetenzen	Die Studierenden erwerben Kenntnisse über die Grundlagen der Linearen Algebra und Analytischen Geometrie, die sie für Anwendungen in der Vektor- und Tensorrechnung, der Differential- und Integralrechnung und der Theorie der Differentialgleichungen benötigen.
Inhalt	 - Komplexe Zahlen - Vektorräume - Matrizenrechnung - lineare Gleichungssysteme - Determinanten - Eigenwerte und Eigenvektoren - Hauptachsentransformation, Jordansche Normalform - Kurven und Flächen 2. Ordnung

Prüfungsvorleistungen	1 bestandenes Testat
Art, Umfang der Prüfung	Klausur, 120 Minuten
Regelprüfungstermin	Prüfungszeitraum des 1. Semesters
Zugelassene Hilfsmittel	Vorlesungsskript, Taschenrechner
Noten	Bewertung nach deutschem Notensystem

Modulbezeichnung	Analysis I: Differential- und Integralrechnung
Modulnummer	12641
Modulverantwortliche(r)	Hochschullehrer Institut für Mathematik
Lehrveranstaltungen	Vorlesungen 3 SWS Übungen 1 SWS

Sprache	deutsch
Studienrichtung/Teilnehmerkreis	Bachelor-Studiengang Physik
Kategorie/Lage im Studienplan	Pflichtmodul / Grundlagenstudium, 1. Semester
Fachliches Teilgebiet / Beziehung zu Folgemodulen	Mathematik / Voraussetzung für Theoretische Physik II-VI, Analysis II-IV

Dauer des Moduls	1 Semester
Termin des Moduls	jedes Wintersemester
Präsenzzeit in h	60
Eigenstudium in h	118
Prüfung in h	2
Leistungspunkte	6

Vorausgesetzte Kenntnisse	Abiturkenntnisse
Vermittelte Kompetenzen	Die Studierenden lernen die grundlegenden Begriffe wie Folge, Reihe, Grenzwert, Stetigkeit, Ableitung und Integral kennen und erwerben die Fähigkeit zum sicheren Umgang mit ihnen.
Inhalt	Natürliche, reelle und komplexe Zahlen konvergente Folgen und Reihen, Grenzwert und Stetigkeit von Funktionen Differenzierbare Funktionen, Taylorformel, lokale Extrema Riemannsches Integral, Hauptsatz der Differential- und Integralrechnung, Integrationsmethoden Funktionenreihen (Potenzreihen, Fourierreihen)

Prüfungsvorleistungen	erfolgreiche Bearbeitung der Übungsaufgaben
Art, Umfang der Prüfung Klausur, 120 Minuten	
Regelprüfungstermin	Prüfungszeitraum des 1. Semesters
Zugelassene Hilfsmittel	Formelsammlungen
Noten	Bewertung nach deutschem Notensystem

Modulbezeichnung	Analysis II: Funktionen von mehreren Veränderlichen	
Modulnummer	12642	
Modulverantwortliche(r)	Hochschullehrer Institut für Mathematik	
Lehrveranstaltungen	Vorlesungen 4 SWS Übungen 2 SWS	

Sprache	deutsch
Studienrichtung/Teilnehmerkreis	Bachelor-Studiengang Physik
Kategorie/Lage im Studienplan	Pflichtmodul / Grundlagenstudium, 2. Semester
Fachliches Teilgebiet / Beziehung zu Folgemodulen	Mathematik / Voraussetzung für Analysis III,IV, Theoretische Physik III-VI

Dauer des Moduls	1 Semester	
Termin des Moduls	jedes Sommersemester	
Präsenzzeit in h	90	
Eigenstudium in h	178	
Prüfung in h	2	
Leistungspunkte	9	

Vorausgesetzte Kenntnisse	Analysis I
Vermittelte Kompetenzen	Die Studierenden erwerben grundlegende Kenntnisse der Differential- und Integralrechnung für Funktionen von mehreren Veränderlichen und lernen Lösungsmethoden für lineare gewöhnliche Differentialgleichungen kennen.
Inhalt	Differentialrechnung für Funktionen mit mehren Veränderlichen (partielle Ableitungen, totale Differenzierbarkeit) Gewöhnliche Differentialgleichungen (Existenz- und Eindeutigkeitssätze, Fundamentalsysteme, elementare Lösungsmethoden) Mehrdimensionales Riemann-Integral, Kurven- und Oberflächenintegrale, Integralsätze von Gauss und Stokes

Prüfungsvorleistungen	erfolgreiche Bearbeitung der Übungsaufgaben	
Art, Umfang der Prüfung	Klausur, 120 Minuten	
Regelprüfungstermin	Prüfungszeitraum des 2. Semesters	
Zugelassene Hilfsmittel Formelsammlungen		
Noten Bewertung nach deutschem Notensystem		

Modulbezeichnung	Analysis III: Funktionentheorie, Hilbertraumtheorie	
Modulnummer	12643	
Modulverantwortliche(r)	Hochschullehrer Institut für Mathematik	
Lehrveranstaltungen	Vorlesungen 3 SWS Übungen 1 SWS	

Sprache	deutsch
Studienrichtung/Teilnehmerkreis	Bachelor-Studiengang Physik
Kategorie/Lage im Studienplan	Pflichtmodul / Grundlagenstudium, 3. Semester
Fachliches Teilgebiet / Beziehung zu Folgemodulen	Mathematik / Voraussetzung für Analysis IV, Theoretische Physik IV-VI,

Dauer des Moduls	1 Semester	
Termin des Moduls	jedes Wintersemester	
Präsenzzeit in h	60	
Eigenstudium in h	118 (119,5)	
Prüfung in h	2 (0.5)	
Leistungspunkte	6	

Vorausgesetzte Kenntnisse	Analysis I,II
Vermittelte Kompetenzen	Die Studierenden erwerben Kenntnisse über die Grundbegriffe der Funktionen- theorie und die Grundlagen der Theorie linearer Operatoren in einem Hilber- traum. Dabei erlangen sie insbesondere die Fähigkeit, mit komplexen Funktionen zu arbeiten.
Inhalt	Funktionentheorie: Differentiation im Komplexen, Cauchy-Riemannsche Differentialgleichungen, komplexe Kurvenintegrale, Cauchyscher Integralsatz, Laurent-Reihe, Residuensatz, konforme Abbildungen Hilbertraumtheorie: Hilbertraum, orthogonale Systeme, lineare Operatoren, selbstadjungierte Operatoren, Spektraltheorie selbstadjungierter Operatoren

Prüfungsvorleistungen	erfolgreiche Bearbeitung der Übungsaufgaben	
Art, Umfang der Prüfung	Klausur im Umfang von 120 Minuten oder mündliche Prüfung im Umfang von 30 Minuten (wird vom Hochschullehrer vor Beginn der Lehrveranstaltungen bekanntgegeben)	
Regelprüfungstermin	Prüfungszeitraum des 3. Semesters	
Zugelassene Hilfsmittel	Formelsammlung	
Noten	Bewertung nach deutschem Notensystem	

Modulbezeichnung	Analysis IV: Distributionen, partielle Differentialgleichungen
Modulnummer	12644
Modulverantwortliche(r)	Hochschullehrer Institut für Mathematik
Lehrveranstaltungen	Vorlesungen 4 SWS Übungen 2 SWS

Sprache	deutsch
Studienrichtung/Teilnehmerkreis	Bachelor-Studiengang Physik
Kategorie/Lage im Studienplan	Pflichtmodul / Grundlagenstudium, 4. Semester
Fachliches Teilgebiet / Beziehung zu Folgemodulen	Mathematik Voraussetzung für Theoretische Physik V, VI

Dauer des Moduls	1 Semester
Termin des Moduls	jedes Sommersemester
Präsenzzeit in h	90
Eigenstudium in h	178 (179,5)
Prüfung in h	2 (0,5)
Leistungspunkte	9

Vorausgesetzte Kenntnisse	Analysis I-III
Vermittelte Kompetenzen	Die Studierenden werden befähigt, mit Distributionen mathematisch korrekt umzugehen. Sie werden mit Methoden zur Lösung von partiellen Differentialgleichungen vertraut gemacht und lernen Lösbarkeitssätze für einige wichtige Aufgaben der mathematischen Physik kennen.
Inhalt	Distributionen: reguläre und singuläre Distributionen, Differentiation von Distributionen, Faltung, Fouriertransformation temperierter Distributionen, Sobolevräume Partielle Differentialgleichungen: Quasilineare Differentialgleichungen 1. Ordnung, lineare partielle Differentialgleichungen 2. Ordnung, Eigenschaften harmonischer Funktionen, Randwertaufgaben für die Laplace-Gleichung, Anfangswertaufgaben bzw. Randwertaufgaben für Diffusions- und Wellengleichung

Prüfungsvorleistungen	erfolgreiche Bearbeitung der Übungsaufgaben
Art, Umfang der Prüfung	Klausur im Umfang von 120 Minuten oder mündliche Prüfung im Umfang von 30 Minuten, (wird vom Hochschullehrer vor Beginn der Lehrveranstaltungen bekanntgegeben)
Regelprüfungstermin	Prüfungszeitraum des 4. Semesters
Zugelassene Hilfsmittel	Formelsammlung
Noten	Bewertung nach deutschem Notensystem